Science: changing bad things into good things (via Warren Ellis):
In a recent study, scientists from UC Berkeley led by Matt Francis have demonstrated how to program tobacco plants to take advantage of the efficient way that they collect sunlight. Rather than attempt to reprogram all the cells of a mature tobacco plant, the scientists genetically engineered a virus called the tobacco mosaic virus to do the job for them. The researchers sprayed the modified virus on a crop of tobacco plants, and the virus caused the plant cells to produce lots of artificial chromophores, which turn photons from sunlight into electrons.
In order for the chromophores to work, however, they must be spaced at a precise distance from one another - about two or three nanometers. A little closer or further apart, and the electric current will either be halted or the electrons will be very difficult to harvest.
Thankfully, tobacco plant cells have evolved to space chromophores at this exact distance, lining them up in a long spiral hundreds of nanometers long. By exploiting this structure, the researchers could take advantage of billions of years of evolution to grow perfectly spaced strands of chromophores.
"Over billions of years, evolution has established exactly the right distances between chromophores to allow them to collect and use light from the sun with unparalleled efficiency," said Francis.
Science: for mad scientists only.
Intriuged? Go, read.
|